

## Aerospace Technology Working Group

JPL

Theme: Future Space Age Technologies

# **IVHM Sensors Program**

Ed Baroth, Ph.D.

Manager, Advanced Sensor Systems

Jet Propulsion Laboratory,

California Institute of Technology

(818) 354-8339 ebaroth@jpl.nasa.gov

October 26 - 28, 1999

Phoenix, AZ



## Agenda

- IVHM (Code R) Team
  - Objectives & Recent Activity
- Vehicle Health and Sensors
  - Current Work
- Sensor activities
  - ARC, DFRC, GRC, JPL, KSC, LaRC, MSFC
- Summary

...



## **Code R Team Objectives**



• Support, advise and direct specific program IVHM needs

• Bridge technology gaps and manage development program

- Coordinate between program needs and identify common technologies
- Identify technology gaps and lobby for bridge funding
- Interface and coordinate with external interfaces
  - Work with supporting technology programs and leverage applicable resources (i.e., ISE, Instrumentation, etc.)
  - Coordinate with industry, academia and other government agency technology development plans

NASA

## **Recent Activity**

- Support 2<sup>nd</sup>/3<sup>rd</sup> Generation funding exercise: STAS III - Phase II
- Support specific experiments on X-vehicles
   X-33, X-34, X-37
- Support Shuttle Upgrade Program

ech -















# **Current Analysis**

- X-33
  - H<sub>2</sub> Tanks
- Shuttle
  - SSME

ecb



## **IVHM Sensor Contacts**



- ARC Mike Skidmore <mskidmore@mail.arc.nasa.gov>
  - Joan Pallix <jpallix@mail.arc.nasa.gov>
  - Charles Simonds <csimonds@mail.arc.nasa.gov>
- DFRC Keith Schweikhard <Keith.Schweikhard@dfrc.nasa.gov>
- GRC Jih-Fen Lei < Jih-Fen.Lei@lerc.nasa.gov>
- JPL Ed Baroth <ebaroth@jpl.nasa.gov>
- KSC Scott Wilson < Scott. Wilson-1@kmail.ksc.nasa.gov>
- LaRC- Bill Prosser <w.h.prosser@larc.nasa.gov>
- MSFC- Anthony Kelley <anthony.kelley@msfc.nasa.gov>

ech !



## **ARC**

#### Rapid Remote Wireless TPS Recertification

- Commercial RFID Tags coupled with passive thermal/mechanical overlimit sensors
- Embedded with no batteries, no maintenance
- Small and lightweight, global TPS monitoring without impact to TPS properties or vehicle weight.
- Designing and seeking designs for resettable passive overlimit sensors.



- Seeking designs for simple sensor systems to measure TPS parameters throughout the vehicle flight profile (temperature, pressure, stress, strain, impact, chemical change).
- Selected sensor suite will be tested for performance range, reliability and robustness.
- Evaluate feasibility for long term miniaturization of selected sensors and ability to combine with wireless communications.



#### •Flight Tests Planned for Selected Sensor Systems

- X-34 tests of gap heating thermal overlimit sensors in FY01.
- Shuttle tests of gap heating thermal overlimit sensor in FY01- resettable in FY02.
- X-34 and Shuttle flight testing of other selected sensors in FY02 to FY06.

ecb 1



## **ARC**

Science Payloads IVHM would develop sensors, sensor systems, habitats, and associated communication structures to seamlessly integrate payload systems with overall IVHM concepts and designs.

#### Improved safety of crew and vehicle

- Science Payloads IVH by uses technologies, comm. structures, & data togme, common to other IVHM systems
- Reduced dependence on crew intervention for payload one increased science flexibility and science return
- Continually updated status of Science Payload with Pkinteraction possible
- Directly supports paperless, wireless on-orbit environment, automated mission timeline scheduling for Experiment & Payload Procedures, & autonomous crew concepts



- Safety- Improved Safety of Crew and Science Payloads
- Cost-Reduced On-Orbit Resources to Monitor Science Ops
- Need-Significant increase in Science return to researchers
- Utilization-Common

ecb



### **ARC**

Medical Operations IVHM would develop methodologies, systems, and communication structures to seamlessly integrate Medical Operations activities with overall IVHM concepts and designs



- Science & Medical Operations WHM uses technologies, comm. structures & data mgmt. common to other VHMsy stems
- Improved awareness of osew health & performance- increased opportunities for countermeasure intervention
- Increased vehicle performance crew performance is a critical component of IVHM
- Directly supports paperless, wireless on-orbit environment, automated mission timeline scheduling Experiment & Payload Procedures, & autonomous crew concepts
- Safety- Improved Safety of Crew and Science Payloads
- Cost-Reduced On-Orbit Resources to Monitor Crew Health & Science Ops
- Need-Medical Ops Considered in an Integral Fashion With Overall IVHM Concepts
- Utilization-Common

ech.



## **DFRC**

### X-33 Risk Reduction Experiment

- Provide a flight platform to validate the performance of the X-33 Vehicle Health Monitoring (VHM) system.
- Develop installation and data reduction techniques planned for the VHM system.
  - Validate data flow through the X-33 ground system.
- Assess the measurement accuracy, performance and reliability of the system in both a real world flight environment and in a well characterized laboratory environment.
  - Develop a generic flight test fixture to validate advanced sensing technologies
    - (i.e. fiber optic strain, acoustic emission, etc.)
- Demonstrate the viability of the new technologies being used in the VHM system. These technologies include:
  - Installation and performance of the Generation II fiber optic cable plant.
  - Installation and performance of the X-33 VHM system.
  - Fiber Optic Distributed Strain Sensor (DSS)

ech I





# **DFRC**X-33 Risk Reduction Experiment



- Sanders has delivered X-33 VHM components to NASA Dryden for integration and test on the Systems Research Aircraft. These components include:
  - VHM Computer with DSS Module
  - Two RHN's
  - Multi Mode Generation II Fiber Optic Cable plant
  - Single Mode Fiber Optic cable plant
- NASA Langley has supplied Optical Bragg Grading fiber to Dryden to support the DSS experiment. (59 Fiber Optic Sensors attached to 8 single mode fibers.)
- VHM Computer DSS fibers and RHN's have been integrated on the Systems Research Aircraft.
- The VHM/ RHN configuration is currently being flight tested.
- The DSS experiment will be flight tested in the Fall of 1999

ecb i



## **GRC**

### **Smart Sensors for Harsh Environments**

**Objective:** Develop and demonstrate integrated sensor, electronics and actuator system for intelligent, wireless, real-time, in-situ, distributed sensing and control in harsh propulsion environment.

#### Approach:

- Microfabricated, micromachined, thin film based sensors for minimally intrusive and full field coverage
- Micro-optical sources, sensors and connectors for light weight, safe operation.
- Sensor array for multifunctional and redundancy.
- High temperature silicon carbide electronics for in-situ data processing and wireless communication.
- Integrated sensors, electronics and actuator for smart in-situ diagnosis and control.



Light Source



Sensors



Electronics



Actuators

= Smart Sensor System





# NASA

## **KSC**

#### Oxygen detection smart sensors

- -Galvanic Cell
- -Successful flight experiments on STS-95 and STS-96



#### •Hydrogen detection smart sensors

- -RS485
- -Paladium-chrome Shottky diode "postage stamp" from Glenn Research Center/Case Western Reserve University
- -Successful flight experiments on STS-95 and STS-96
- -Development of combo H2/O2 smart sensor with GRC and MSFC in work



#### •Helium detection sensors

- -Thermocouple
- -Successful flight experiments on STS-95 and STS-96



ecb 2

# NASA

## **KSC**

# •Hall Effect Sensors with Neural Network processing

- -Non-intrusive, clip-on, torroidal shaped
- -Health monitoring of Space Shuttle hydrogen flow control valve in ground test bed being developed



#### •Vacuum Jacketed line smart sensors

- -RS485
- -Successful flight experiments STS-95 and STS-96
- -Ground system applications also being developed



b 24



Sensors

## LaRC

#### SHUTTLE



#### TECH TRANSFER

- Aviation Safety
- · Bridges and Civil Infrastructure
- Petrochemical Plants and Pipelines

## **MSFC**

SFINX - Scalable Fault-tolerant Network of **Intelligent Transducers** 

"SMART-Sheet"

RTVMS - Real Time Vibration Monitoring System

OPAD - Optical Plume Anomaly Detection

AHMS - Advanced Health Monitoring System (for SSME)

Cryogenic Flowmetering

NASA

# Summary

- Expect funding (through Code R) to commence in '00
- Continue to coordinate Center activities & future Roadmap
- Expect to grow team to include industry
- Expect to team with industry for specific tasks